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We reconsider the theory of magnetoresistance in hopping semiconductors. First, we have shown that the
random potential of the background impurities affects significantly the pre-exponential factor of the tunneling
amplitude which becomes short range in contrast to the long-range one for purely Coulomb hopping centers.
This factor to some extent suppresses the negative interference magnetoresistance and can lead to its decrease
with temperature decrease which is in agreement with the earlier experimental observations. We have also
extended the theoretical models of positive spin magnetoresistance, in particular, related to presence of doubly
occupied states �corresponding to the upper Hubbard band� to the case of acceptor states in two-dimensional
structures. We have shown that this mechanism can dominate over the classical wave-shrinkage magnetoresis-
tance at low temperatures. Our results are in semiquantitative agreement with the experimental data.
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I. INTRODUCTION

The problem of magnetoresistance in the hopping trans-
port was addressed decades ago. In particular, an interest to
this topic was related to important additional information
provided by corresponding experiments �including estimates
of the localization length�. The most general and natural
mechanism of positive magnetoresistance of orbital nature is
related to the shrinkage of the localized wave function by
magnetic field; it was extensively reviewed in Ref. 1. An-
other important mechanism of orbital magnetoresistance was
considered by Nguyen et al.2 �for the detailed review see
Ref. 3�. It is related to the presence of the underbarrier scat-
tering of hopping electrons by intermediate hopping sites and
to interference between different hopping trajectories. Note
that for the effective interference the difference of lengths of
different trajectories should not exceed the localization
length which restricts the location of the trajectories to the
so-called “cigar region.” A significance of this mechanism
was emphasized by the exponentially broad scatter of hop-
ping probabilities corresponding to different “hopping resis-
tors.” As a result of “logarithmic averaging” over different
configurations the most important role is played by those
interference patterns where the total hopping probability al-
most vanishes as a result of destructive interference. The
magnetic field suppresses interference and thus the average
effect is negative magnetoresistance that appears to be linear
in a weak magnetic field �although becoming quadratic at
H→0�. Important features of the approach discussed in Ref.
3 were as follows. First, the authors exploited an assumption
of the presence of many intermediate scatterers. Second, fol-
lowing the theory,4 the authors assumed the pre-exponential
factor to be equal to � /r, where � is the scattering amplitude
and r is the distance between the hopping site and the scat-
tering center. The picture of interference magnetoresistance
considered in Ref. 3 was very rich including change in the
sign of magnetoresistance, effects of spin glass, etc. �see also
Refs. 5–8�. This negative magnetoresistance was later ob-
served in a number of experimental works �see, for example,
Refs. 9–21�.

Somewhat later the problem was also discussed in Refs.
22 and 23 where it was noticed that in realistic situations the
number of intermediate scatterers is small and most probably
equal to one or �in average� even less. Another important
ingredient of the paper23 was the usage of wave functions
typical for Coulomb centers which have not contained pre-
exponential dependence on r. In contrast to the “scattering
states” of Ref. 3 which contained pre-exponential factors de-
caying with r, this situation can be specified as a “strong
scattering case.” Note that, although in Ref. 23 the authors
considered two-dimensional �2D� hopping, they addressed to
the case of delta-doped layer and thus the asymptotic of the
wave functions was similar to three dimensions �3D�. An
important result of the theory suggested in Ref. 23 was the
following: the patterns of the negative magnetoresistance
were almost universal predicting the maximum value of
�0.6 of the total resistance, and even the combination of the
negative magnetoresistanse and positive wave-shrinkage
magnetoresistance gave the maximum value of negative peak
�with respect to average resistance� of around 40%.

Unfortunately, these predictions for strong scattering case
were not in a good agreement with the experiment. First, in
most of experimental studies the effect of negative magne-
toresistance has not exceeded 10% and typically was around
several percent. Then, it was shown13 that in 3D semicon-
ductors the negative magnetoresistance is suppressed with
decrease in temperature after the crossover from Mott-type
hopping �at higher temperatures� to Efros-Shklovskii �ES�
hopping over the states within the Coulomb gap. The sup-
pression of negative magnetoresistance at low temperatures
was later confirmed in Ref. 15. In the paper13 we explained
such a behavior as a result of decrease in concentration of the
scattering centers within the Coulomb gap. However our cal-
culations were based on assumption that the pre-exponential
factor of the wave functions asymptotic corresponded to
scattering states of Ref. 3 �weak-scattering case� rather than
to hydrogenlike asymptotics exploited in Ref. 23. Later on14

we have also demonstrated that to fit the experimental data
one should also take into account spin mechanisms of mag-
netoresistance. The first one, considered in Ref. 24, is based
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on the fact that an intermediate scatterer should be occupied
to produce a negative scattering amplitude. Thus the interfer-
ence depends on the mutual orientation of the spin of hop-
ping electron and of spin of scattering center. Without exter-
nal magnetic field only one half of the configurations gives
an interference. In magnetic field all localized spins are
aligned which increases the role of interference and, corre-
spondingly, leads to increase in resistance.

Another spin mechanism of positive magnetoresistance
was first considered in Ref. 25 and then was studied in detail
in Ref. 26. It is related to a presence of doubly occupied
hopping sites �corresponding to the upper Hubbard band�.
Due to spin correlations on these sites requiring s pairing of
the spins �recall that we consider here an electron rather than
hole hopping� some hopping transitions are suppressed in
magnetic field �like ones from single-occupied site to another
single-occupied site�.

As mentioned above, the incorporation of all of the rel-
evant factors allowed us to reach quantitative agreement be-
tween the theoretical model and experimental data. However
basing the scattering state asymptotic we exploited an as-
sumption of correlated impurity configurations which had no
solid theoretical proof.

Another important request to the theory of hopping mag-
netoresistance was related to 2D hopping. As mentioned
above, the theoretical model of Ref. 23 exploited 3D local-
ized wave functions which does not hold for typical experi-
ments for doped quantum wells where the wave functions
have 2D character. Then, we should mention a new impor-
tant experimental results18,19 obtained for selectively doped
quantum well structures where both centers of the wells and
centers of the barriers were doped ensuring formation of the
upper Hubbard band. These structures demonstrated suppres-
sion of negative magnetoresistance with decrease in tempera-
ture for the samples with a higher degree of doping. Al-
though we attempted to explain this behavior in a similar
way as for 3D structures in Ref. 13, it hardly works because
of important difference between 2D and 3D physics.

In what follows we will give a consistent description of
magnetoresistance in both 3D and 2D structures including
different orbital and spin mechanisms. An important conclu-
sion of ours is that in most occasions one deals with a weak-
scattering case rather than with a strong scattering case. If we
are restricted to the lower Hubbard band, the decisive factor
is related to the presence of charged centers outside of the
cigar region not involved into interference. The random po-
tential imposed by these centers restricts the extension of the
hydrogenlike asymptotics of the scattering centers up to the
distance to the closest charged center while outside this re-
gion the pre-exponential of the asymptotics appears to be
similar to the one for the potential-well case �weak-scattering
limit�. For the case of the states within the upper Hubbard
band an additional factor is related to the non-Coulombic
potential of the scattering center which is also of a short-
range character. The resulting picture of hopping magnetore-
sistance appears to be different from the one suggested in
Ref. 23 �based on the pure Coulomb wave functions� and
from the one of Ref. 3 �exploiting the assumption of a large
number of intermediate scatterers�. We also emphasize a role
of spin mechanisms of positive magnetoresistance which can

dominate over the wave-shrinkage magnetoresistance at low
temperature. In this concern a special analysis is given to
spin mechanisms for acceptor centers which have an impor-
tant differences with respect to the earlier discussed case of
donor impurities.

II. NEGATIVE MAGNETORESISTANCE IN 3D CASE

Let us consider negative magnetoresistance in 3D case.
As mentioned above, an important ingredient to be included
with respect to the previous studies is a random potential
imposed by the intermediate charged centers �including both
donors and acceptors�.

We shall start from a solution of the Schrödinger equation

−
�2

2m
�� + U0�r�� + U�r�� = E� . �1�

Here U0�r� is the potential of impurity �U0=−� /r in the case
of a hydrogenlike impurity level�, U�r� is the random poten-
tial that comes from the charged centers mentioned above, m
is the electron mass in the conduction band �or the hole mass
in the valence band�, and E is the exact electron energy �we
consider �E��U�r��.

Because of the fact that typical hopping lengths are much
larger a, the characteristic localization length, we can solve
�1� for r�a. Moreover, the typical hopping length rh appears
to be much larger than the typical distance between charged
centers which can be roughly estimated as n−1/3, where n is
the dopant concentration. Indeed, for 3D variable range hop-
ping of Mott type

rh = �a, � = �T0

T
�1/4

, �2�

where

T0 	
21

ga3 , �3�

where g�n /EB is the density of states and EB being the Bohr
energy. Thus one obtains

rhn1/3 � �21an1/3EB

T
�1/4

�4�

that is even for the Mott law rhn1/3 is bigger than 1. The more
so, it holds for a Coulomb gap regime where rh strongly
exceeds the corresponding values for the Mott regime.

Thus we are interested in asymptotics of the wave func-
tions at distances much larger than n1/3 which for moderately
compensated material can be considered as the correlation
length of random potential imposed by the charged centers.
If so, we can make an important conclusion. Namely, the
random potential U is formed by long-range Coulomb cen-
ters and in this sense the potential produced by the “parent”
�for the considered wave function� impurity at distances
larger than n−1/3 makes no difference with potential produced
by other charged centers. In other words, for r	n−1/3 one
should not discriminate between U and U0 and should as-
sume that the resulting potential U has a spatial average
equal to zero.
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Having in mind that r�a we approach the problem of the
asymptotics of the wave function by means of the WKB
method. We introduce the function 
 with regard of the nor-
malization factor for the function � as �= ��a3�−1/2exp�
−
 /��. The Shrödinger equation in 3D case leads to


�2 − ��
� + 2
�/r� = 2m�U�r� + �E�� . �5�

We will expand this equation into series with respect to �
→0. In the zeroth order we have


0� = 
2m�U + �E�� . �6�

This order gives us the exponent. To get the pre-exponent
factor we should use the first order of perturbation theory.
Here we have in mind that function 
0� at large r is actually
a constant—the more so that its linear expansion in U�r� is
averaged out,


1� =
�

r
. �7�

Accordingly the expression for 
 up to the first order is


 =� 
2m�U + �E��dr + � ln r/rmin, �8�

where rmin�n−1/3. And finally the wave function � is

� = exp�−
1

�
� 
2m�U + �E��dr� rmin

r��a3�1/2 . �9�

Having in mind the considerations given above, we can av-
erage

�1/��� 
2m�U + �E��dr = kr ,

where

k = �1/���
2m�U + �E�� .

Note that k differs from k0=
2m�E� /� only in the second
order in U / �E� ��U2 /E2�, as the mean value �U is zero. We
also neglect U in the pre-exponent factor.

So at distances from the scattering center larger than the
correlation length of random potential �assumed to be equal
to the average distance between charged centers� the wave-
function asymptotics has a pre-exponential factor �r−1 which
agrees with the scheme exploited in Refs. 3, 13, and 14 for
3D hopping.

Now, following approaches3,13 let us estimate the hopping
probability between the sites 1 and 2 in the presence of an
intermediate “scattering center” with regard that the energies
of the centers obey relation �E3�� �E1� , �E2�:

P � �J1 + J2�2, J1 = I12, J2 = −
I13I32

�E3�
. �10�

Here J1 and J2 are the hopping amplitudes related to direct
and scattered path correspondingly. Note that the destructive
interference �leading to negative magnetoresistance� implies
that E30� which means that in equilibrium the scattering
site is occupied.

The energy overlapping integrals are

Iij = EB
rmin

rij
exp�− rij/a� , �11�

where we have assumed that rij 	rmin=n−1/3; EB being the
Bohr energy. Without magnetic field this amplitudes are real.
Though in magnetic field their phases are different and the
hopping probability is

P � �J1 + J2ei��2. �12�

Here phase difference �=2�� /�0, where � is the magnetic
flux through the surface bounded by hoping paths. �0 is the
elementary magnetic flux. Accordingly, the interference mag-
netoresistance for �1 is

ln
r�H�
r�0�

� − �� dE3g�E3�� ln�1 + J1�J1 − J�
�2

J2 �d3r3� .

�13�

Here J=J1+J2, g is the density of states, and r3 is the scat-
terer position. The angular brackets correspond to ensemble
average. We consider magnetoresistance to be determined
over hops with small J, so we neglect the term J1 /J in Eq.
�13� and get

ln
r�H�
r�0�

� − �� dE3g�E3�� ln�1 +
J1

2�2

J2�r3,E3��d3r3� .

�14�

To obey J1	J2 one, first, should have r12	r13+r23 with an
accuracy of order of localization length a. Then, having in
mind the pre-exponential factors one notes that for small rmin
the only possibility to satisfy the relation is to have one of
the distances, r13 or r23 to be small. We will assume that it
holds for r23 which is estimated as

r23 � rmin

EB

E3
. �15�

Let us choose the surface at which J=0 and transform the
integration over r3 in the way d3r3→d2RdR�, where R is
the coordinate on the surface in question while R� is the
coordinate along the normal to the surface where we assume
that R�=0 corresponds to J=0. In the lowest order in R� we
have J= �dJ /dR��R�. As it is seen, the integration of the
logarithm term over R� gives

�J1

dJ/dR1
.

Finally, the integration of

J1

dJ/dR�

over d2R gives approximately the volume accessible for the
site 3. Note that we have r13+r23�r12+a, thus the projection
of r23 on the plane normal to r12 should be less than �r23a�1/2.
As a result, the integration over the spatial coordinate r3
gives
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�
rmin

2 EB
2

E3
2 a� . �16�

In its turn, the area of the interference loop �entering the
estimate of �� is

r12�rmin

EB

E3
a�1/2

�17�

Note that these estimates actually hold for all accessible val-
ues of r23 up to r23�r12 /2. The final result depends on the
behavior of g���. For g=const �a Mott-type hopping� the
integration over E3 is naturally controlled by the lower limit
which accordingly to Eq. �15� corresponds to the larger pos-
sible value of r23�r12 /2. In this case the right-hand side
�rhs� of Eq. �13� is �rh

5/2, where rh�r12.
In contrast, for the Coulomb gap hopping the integration

over E3 is controlled by the upper level, EC, corresponding to
the edge of Coulomb gap. In this case r.h.s. of Eq. �13� is �rh
since the value of r23 does not depend on rh.

Now let us consider a combination of NMR with a posi-
tive magnetoresistance �PMR� related to wave-function
shrinkage which can be estimated as

ln
��H�
��0�

= �H

B
�2

, �18�

where

B2 =
�c2�2

rh
3ae2 . �19�

Here � is a numerical parameter resulting from he percola-
tion theory; for Mott-type hopping ��400 �Ref. 1� while for
the Coulomb gap hopping different sources give ��300 and
��700.

In its turn, NMR can be rewritten as

ln
��H�
��0�

= k
H

B
, �20�

where

k = gMEBrminrh2a�1/2 Mott law,

k =
�3

e6

r�
5/2

rh
1/2aEC

3 2�1/2 ES law. �21�

Here � is the dielectric constant, r� is the typical hopping
length for the states corresponding to the edge of the Cou-
lomb gap while EC is the width of Coulomb gap. One sees
that as a result we have minimum of resistance,

Hmin =
k

2
B, ln

��Hmin�
��0�

= −
k2

4
. �22�

It is seen that the value of Hmin decreases with temperature
decrease irrespective to the type of the variable range hop-
ping. At the same time for samples corresponding to Mott
law the absolute value of resistance in minimum increases
with temperature decrease while for the case of the Coulomb
gap hopping it decreases with temperature decrease.

III. NEGATIVE MAGNETORESISTANCE IN 2D

Let us now approach the problem of negative magnetore-
sistance in a 2D structure where impurity wave functions are
quantized in the orthogonal to impurity plane direction. First
we will consider the case where we deal only with single-
occupied or empty impurity centers �as it was done above for
a 3D case�.

Let us start with an approximation of 2D impurity wave
function in the r�a limit. Analogously to the previous case
we neglect U0�r� and introduce function 
 as �
= ��a2�−1/2exp�−
 /��. The corresponding WKB equation is


�2 − ��
� + 
�/r� = 2m�U�r� + �E�� . �23�

Following the same procedure as for a 3D case we obtain

� = exp�−
1

�
� 
2m�U + �E��dr�� rmin

r�a2�1/2

. �24�

Analogously to 3D case this wave function is nearly equal to
the potential-well wave function �exp�−kr� /
r, where k
= �
2m�E�+U /� which differs from k0=
2m�E� /� only in
the second order in U /E.

Now let us consider negative magnetoresistance related to
the interference contribution to the hopping probability. Fol-
lowing the same lines as for a 3D case we obtain an equation
similar to 14 except that the integration is over d2r3 and the
density of states g also corresponds to 2D. An important
difference is related to the fact that now the value of J van-
ishes at

r23 = rmin�EB/E3�2. �25�

With a similar transformation of the variables the integration
of the logarithmic term over the coordinates gives

� rminEB
2

E3
2 �3/2

a1/2� �26�

while the effective loop area is

r12�rmin�EB

E3
�2

a�1/2

. �27�

Since in 2D in the Coulomb gap regime g�� one notes that
irrespectively to the hopping law the integration over E3 is
controlled by the lower possible values of E3 leading finally
to the estimates of r23�r12. Thus one obtains

k2 = gMEBrmin
1/2 rh2a1/2�1/2 Mott law,

k2 =
�2

e4 EB
2rminrh

1/22a1/2�1/2 ES law. �28�

Thus, as is seen, for the situation considered above for 2D
the only combination of interference NMR and wave-
shrinkage PMR cannot lead to a suppression of NMR with
decrease in the temperature �at least for a low-temperature
limit of linear NMR� since for both laws the temperature
derivative of k stays negative.

An important feature of the 2D quantum well structure is
an easy possibility to have an occupation of the upper Hub-
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bard band. Namely, if we dope not only the well regions but
also the barrier regions, the carriers from the barriers are
captured by the wells and can form doubly occupied states. It
was this situation which was realized in our experiments de-
scribed in Refs. 18 and 19. Since in these experiments we
dealt with GaAs/AlGaAs structures of quantum wells with p
doping by Be, here we will also imply acceptor centers.

In our experiments the central regions of both wells and
barriers were nearly equally doped by acceptor impurity Be.
Thus the holes from the barriers have a possibility to occupy
the second position for acceptor in the wells forming the
upper Hubbard band. However for the hole there was another
possibility—to stay around its native acceptor in the barrier

forming a single-occupied center which we will denote as Ã0.
The corresponding scenario was first discussed in Ref. 27. As
a result, at the Fermi level we have centers with different
occupation numbers—at least, A+ �doubly occupied�. A0

�single occupied� Ã0 �holes bound to the barrier acceptor�,
and A− �empty barrier acceptor with no hole around�. Note
that the structure of A+ centers in quantum wells was first
studied in Ref. 28.

The possibility for a hole to form A+ or Ã0 center depends
on relation between the binding energies of these centers, Ub

and Ũb. In particular, if Ub	 Ũb, then all the barrier accep-
tors form A− centers while all the acceptors in the well form
A+ centers. However for our experiments the distance be-
tween the barrier acceptor and the interface between the bar-

rier and well was not large and we expect Ũb	Ub. In this
case the probability to form A+ center depends on the dis-
tance between the barrier acceptor and the closest acceptor in
the well. Indeed, the formation of A+ center profit from the
interaction between A+ center and A0 center.27

Here we assume that some holes from the barrier are still

coupled to their parent acceptors �Ã0 centers� and some are
localized on the acceptors in the well �A+ centers�. According

to charge conservation the number of Ã− centers �that are

free Ã0 centers� is equal to the number of A+ centers.

N�A+� = N�Ã−� . �29�

In addition, we believe that there exists a random poten-
tial that overlap the energies of different types of centers. If

the variances of Ã0 and Ã− energies are equal, Eq. �29� leads

to equal densities of states for Ã0 and Ã− at the Fermi level.
For our purpose we assume that this densities of states are at
least comparable.

As for the negative magnetoresistance for the upper Hub-
bard band, it can be considered in the same way as for the
lower Hubbard band discussed above. Note that the scatter-
ing potential strongly decays with distance U0�r−4 and thus
the corresponding asymptotics of the wave functions are
similar to the one given by Eq. �24� but one should take
rmin=a.

IV. SPIN MECHANISMS OF MAGNETORESISTANCE FOR
ACCEPTOR STATES

We shall start from the mechanism of spin magnetoresis-
tance first suggested in Ref. 24 which seems to be especially

important for acceptor dopants. It is related to the fact that
interference can occur only if the spin states of the final
states for both tunneling paths coincide. For three-cite con-
figuration we discuss it means that the initial and intermedi-
ate centers should have the same spin projections �we remind
that for destructive interference in question the energy of
intermediate center should be negative, i.e., at equilibrium
this center should be occupied�. For the case of acceptor
states corresponding to the lower Hubbard band the corre-
sponding configuration is in our case Ã0− Ã0−A− where the
role of intermediate center is played by the site Ã0. When
dealing with holes one should take into account that the spin-
orbit interaction that significantly complicates the problem.
Namely, in general case the hole momentum does not con-
serve during the hop. We are grateful to A. S. Iosselevich
who attracted our attention to this problem. However if we
restrict ourselves to the case of thin quantum well and take
momentum projection on the growth axis �we consider it to
be also the axis of magnetic field� the conservation actually
takes place and the problem can be treated similarly to the
electron one.

The interference takes place when initial impurity of the
hop and the scatterer have the same state �i.e., the same
momentum projection on the axis of magnetic field�. In thin
quantum well the ground state of the acceptor is doubly de-
generate at zero field. So at H=0 the interference probability
is P�H=0�=1 /2. However in strong magnetic field the holes
momenta are aligned and do not affect �destructive� interfer-
ence, that is, in this case P�H→��=1. Thus an increase in
the magnetic field leads to enhancement of destructive inter-
ference which means positive magnetoresistance similar to
the one discussed in Ref. 24.

This probability is different for upper Hubbard band. Ac-
tually in thin quantum well the ground state of A+ center is
not degenerate so when the hop is completely through upper
Hubbard band states �A+−A+−A0 hop� the interference
probability is P�1. If the states of both the Hubbard bands
coexist at the Fermi level, it can be estimated that the aver-
age statistical factor P�H=0� is still on the order of 1/2,
although its value at strong fields, P�H→�� appears to be
somewhat smaller than unity.

At weak magnetic fields one expects a degree of spin
alignment to be ���gH�2 /T2 and thus the statistical factor is
equal

P�H� 	 P�H = 0� + ���gH

T
�2

. �30�

Here the coefficient � according to more detailed statistical
calculations which we are going to present elsewhere can be
estimated to be on the order of 1/7.

Since P describes the probability of destructive interfer-
ence, one concludes that at weak fields the positive magne-
toresistance resulting from statistical factor P is quadratic in
terms of magnetic field. It can be estimated as follows:

ln
R�H�
R�0�

= ���gH

T
�2�Rsat

R�0�
, �31�

where �Rsat is the saturation value for the interference con-
tribution to resistance with no account of spin degrees of
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freedom which is achieved when the phase � in Eq. �12�
exceeds 2�. As it can be estimated, the ratio �Rsat /R�0� is
�rh for Mott hopping and �rh

1/2 for the Coulomb gap hop-
ping.

In its turn, it coexists with the linear negative magnetore-
sistance �of orbital nature� which at relatively weak fields
can be estimated as

P�H = 0��Rsat
H

Hsat
.

As is known, if at the Fermi level the states of the lower
and the upper Hubbard bands coexist, there also exists a
specific spin mechanism of positive magnetoresistance first
considered in Ref. 25 �and later discussed in detail in Ref.
26� for n-type 3D structures. In such structures one deals
with D0 �occupied donors�, D− �doubly occupied donors�,
and D+ �empty donors�. Without external magnetic field the
following configurations of hops are possible: D−→D0, D0

→D0, D0→D+, and D−→D+. In the magnetic field the spins
of D0 centers are polarized and thus the hops D0→D0 are
forbidden �since in the final state of the second site corre-
sponding to D− the spins should be in opposite directions�. In
the same way the transitions D−→D+ are also suppressed.
Thus the resistance increases as a result of application of
external magnetic field.

In our case of p-type structures the situation appears,
again, more complicated due to a more complex structure of
A+ centers. However, in the limit of thin quantum well, the
considerations given in Refs. 25 and 26 still hold. Basing on
the calculations similar to given in Ref. 26 one obtains for
the weak-field limit �gHT the following estimate:

ln
R�H�
R�0�

= CF�g�bH

T
�2

, �32�

where C�1,

F =
2glgu

�gl + gu�2 �33�

while gl and gu are the densities of states of the lower and
upper Hubbard bands. Note that for a low concentration of
dopants gu is controlled by the concentration of A+ centers
while gl—by the concentration of A− centers and thus gl
=gu. At stronger magnetic fields when �gH	T, the corre-
sponding contribution to magnetoresistance still increases
with magnetic field increase until �gH reaches the value �T
and then saturates.25,26

One notes that at low enough temperatures the positive
magnetoresistance of the spin nature suggested in Ref. 25
can exceed the wave-shrinkage magnetoresistance. At the
same time this contribution at relatively weak fields when
�gHT is expected to be comparable to the spin magne-
toresistance resulting from interference term discussed
above. Summarizing both spin contributions to quadratic
magnetoresistance we estimate the coefficient k resulting
from a similar parametrization of the positive quadratic and
linear negative magnetoresistance as was done above:

k2 = gMEBrmin
1/2 rh2a1/2� Mott law,

k2 =
�2

e4 EB
2rminrh

1/22a1/2� ES law,

� = P�H = 0�
T

g�B

rh
3/2a1/2e

c�
�CF + �

�Rsat

R�0� �
−1/2

. �34�

Thus, as is seen, for the Mott case at T→0 k�T1/3 while for
the ES case it is �T1/4.

Note that in our calculations we assumed that the value of
Hmin still corresponds to a linear behavior of negative mag-
netoresistance which means that the magnetic flux through
the interference area is much less than the magnetic-flux
quantum �0. The critical field Hsat corresponding to a cross-
over from the linear behavior to saturation of the negative
magnetoresistance is given as

Hsat 	
�0

2�rh
3/2a1/2 . �35�

Correspondingly, if Hmin given by Eq. �22� in appears to
be larger than Hsat our calculations given above are invalid
and one should compare the positive magnetoresistance with
the saturated negative magnetoresistance rather than with the
linear negative magnetoresistance. One notes that in contrast
to linear magnetoresistance which is proportional to the area
of the interference loop for the saturation magnetoresistance
this proportionality is omitted. As a result, as it was noted
above, the temperature dependence of the saturation value of
negative magnetoresistance �Rsat /R�0� results from factors
�rh for the Mott hopping and �rh

1/2 for the Coulomb gap
hopping. It is seen that the corresponding increase in the
saturation magnetoresistance with temperature decrease is
much weaker than increase in the positive magnetoresis-
tance. Then, in the case Hmin	Hsat it is the value of Hsat
which corresponds to minimal resistance since it separates
the region of resistance decrease due to the negative magne-
toresistance and resistance increase due to the positive mag-
netoresistance. However at this situation the spin magnetore-
sistance �Eq. �31�� is also saturated so the temperature
behavior of positive magnetoresistance is related to Eq. �18�
and �or� to Eq. �32�.

In its turn let us consider the temperature behavior of the
relation between Hmin and Hsat. According to Eqs. �22� and
�34�,

Hmin = 2gMEBrmin
1/2 a

T2

�g�B�2CF

rh
5/2e

c�
� T7/6 �Mott law� ,

Hmin = 2
�2

e4 rmina
T2

�g�B�2CF

rh
2e

c�
� T �ES law� . �36�

At the same time Hsat�T1/2 for the Mott law and Hs�T3/4 for
the ES law. Thus the ratio Hmin /Hsat decreases with tempera-
ture decrease and this decrease is more pronounced for the
Mott law.

V. DISCUSSION

In Fig. 1 we present our experimental results from Ref. 13
for 3D hopping concerning the temperature behavior of mag-
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netoresistance for the regimes of Coulomb gap hopping �Fig.
1�a�� and of Mott-type hopping �Fig. 1�b��. It is seen that
these results are in a qualitative agreement with the predic-
tions of Sec. II. In particular, the minimal value of resistance
increases with temperature decrease for the Mott-type hop-
ping and decreases for the Coulomb gap hopping. As was
noted in Sec. I, the agreement was strongly improved when
we had taken into account more subtle spin effects,14 how-
ever here we will not go into these details discussed earlier.

At Figs. 2 and 3 we present experimental results described
in Refs. 18 and 19 for multiple quantum well structures
p-GaAs/AlGaAs:Be with different dopant concentration n. It
is seen that for a sample with smaller concentration �Fig. 2�
the negative magnetoresistance is strongly enhanced with
temperature decrease while for the sample with larger dopant
concentration �Fig. 3�, in contrast, it is suppressed with a
temperature decrease.

To our opinion, the difference of magnetoresistance
curves for the samples with different n is related to the fol-
lowing fact. The sample with smaller concentration is far

from the metal-insulator transition and the localization length
is relatively small, a�10 nm. Thus, in a view of small n and
small a the three-cite approximation for interference contri-
bution holds, nrh�armin�1/2�1. For a heavily doped sample
a�20 nm and n�1012 cm−2, correspondingly,
nrh�armin�1/2	1. As a result, the three-cite approximation for
this sample does not hold and the interference loop includes
large number of scatterers. As was noted above, the spin
statistical factor for each additional site with nonzero spin at
H=0 for acceptor impurities is �1 /2. Correspondingly, the
interference contribution for loops involving many interme-
diate scatterers vanishes at H=0. As a result, the linear con-
tribution to negative magnetoresistance is, in any case, much
smaller than for weakly doped samples. In contrast, the qua-
dratic positive magneroresistance resulting from the statisti-
cal factor given by Eq. �31� strongly increases with tempera-
ture decrease,

� T−7/3 �Mott law�, � T−9/4 �ES law� . �37�

In addition, we can expect that for the sample with large n
HsatHmin, it is Hsat which plays the role of Hmin. Due to
weak temperature dependence of Rsat the temperature behav-
ior at the fields larger than Hsat, that is, corresponding to the
minimum of ��H�, is completely controlled by the spin PMR
which gives ��H��T−� with �	2. Indeed, an increase in the
resistance by factor of 4–5 is observed at the fields larger
than 0.3 T for the temperature variation from 0.9 to 0.4 K.

VI. CONCLUSIONS

To conclude, we have reconsidered the existing theory of
hopping magnetoresistance. We have shown that the random
potential induced by the background impurities can affect the
asymptotics of the localized states and, as a result, suppress
to some extent the negative magnetoresistance related to

FIG. 1. Temperature behavior of magnetoresistance for bulk
CdTe crystals doped by donor impurities �Cl�. �a� The curves for the
sample in the Coulomb gap regime and �b� for the sample in the
Mott regime.

FIG. 2. Temperature behavior of resistance for the structures of
ten GaAs wells of thickness 15 nm, separated by AlGaAs barriers
with thickness 15 nm. The central parts of both wells and barriers
were doped by p-type impurity Be with concentration 1
�1017 cm−3.

FIG. 3. Temperature behavior of magnetoresistance for the
structures similar to described at Fig. 2 but with concentration of Be
9�1017 cm−3.
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interference effects. We have also generalized the theory for
the case of acceptor states in 2D structures including the
effects of upper Hubbard band. The results obtained are in
agreement with the existing experimental data. In particular,
we explain the suppression of negative magnetoresistance
with temperature decrease observed earlier for both 3D and
2D structures.
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